

SCIENCE ORGANIZING COMMITTEE

Patrick Pinet IRAP, Toulouse University, France (Chair) Mahesh Anand Open University, UK (Co-Chair)

James Carpenter

Ana Cernok

LOCAL ORGANIZING COMMITTEE Patrick Pinet Serge Chevrel Marie-Ange Albouy Gaël David Serge Chevrel Doris Daou Simone Pirrotta Kristina Gibbs Harry Hiesinger Yves Daydou Dolorès Granat Jérémie Lasue

Greg Schmidt Alice Stephant Wim van Westrenen

European Lunar Symposium Toulouse 2018

Meeting information

Welcome to Toulouse at the Sixth European Lunar Symposium (ELS)! We are hoping to have a great meeting, demonstrating the diversity of the current lunar research in Europe and elsewhere, and continuing to provide a platform to the European lunar researchers for networking as well as exchanging news ideas and latest results in the field of lunar exploration.

We acknowledge the support of Toulouse University and NASA SSERVI (Solar System Exploration Research Virtual Institute). Our special thanks to our SSERVI colleagues, Kristina Gibbs, Jennifer Baer, Ashcon Nejad and to Dolorès Granat at IRAP (Institut de Recherche en Astrophysique et Planétologie)/OMP (Observatoire Midi-Pyrénées) for their contribution to the meeting preparation and program implementation.

Members of the Science Organizing Committee are thanked for their input in putting together an exciting program and for volunteering to chair various sessions in this meeting. Our special thanks for Ana Cernok and Alice Stephant from the Open University for putting together the abstract booklet.

MEETING VENUE

The ELS will take place at the museum of modern and contemporary art, called "Les Abattoirs". It is located in the center of Toulouse, close to the "Garonne" river. The street address is 76 Allées Charles de Fitte, 31300 Toulouse. After entering the building through the main entrance, you will immediately find the registration/help desk on the ground floor. The meeting room, called "Auditorium" is in the basement of the building. The room seats 200 people and is equipped with a beamer (HDMI, VGA). There is also a second room called "La Salle du Conseil" (25 seats) available for break-out meetings upon request. This second room is also equipped with a beamer. Oral sessions will be held in the "Auditorium"; the posters will be located in the Hall of the museum, which is next to the "Auditorium".

Les Abattoirs from the street

l 'Auditorium

https://www.google.fr/maps/place/Les+Abattoirs/@43.60075,1.4270853,17z/ https://www.google.fr/maps/place/H%C3%B4tel-Dieu+Saint-Jacques/@43.5995584.1.435377.18z

The meeting venue is shown with the red circle on the map above. The place for the conference dinner on Tuesday evening, at the "Hotel-Dieu Saint-Jacques" is shown with the blue circle. It is within a walking distance on the order of half a mile from the museum. Central station (Gare Matabiau) is to the upper right.

TRANSPORTATION

Métro : Line A - station "Saint-Cyprien République"

Bus: line 31, bus-stop "les Abattoirs"

Bicycles rent: « Vélo Toulouse », 2 stations are very close to the museum.

REGISTRATION

All participants should register and collect their name badges and conference material at the registration/help desk (located in the main hall of the museum) on Sunday 13^{th} May evening (6:00 – 8:00 pm) or on Monday 14^{th} or Tuesday 15^{th} May (preferably between 8:15 am and 8:45 am).

MEALS

We will provide coffee, tea, water, juice, and cookies during 'coffee breaks' in the hall of the museum Lunch, where provided, will be served next door to the museum in a place called "L'Hémicycle".

PRESENTATIONS

All oral presentations will take place in the museum "Les Abattoirs" in the Auditorium. Posters will be presented in the Hall of the museum and next to the Auditorium. Those presenting talks are encouraged to upload their presentation on the designated computers in the Auditorium as early as possible to ease the organization and to avoid any delays in the schedule. Those presenting on Monday morning, please come to the "Auditorium" no later than 8:20 am. Those presenting in the afternoon session, please upload your presentation during lunch break at the latest. Those presenting on Tuesday, please upload your presentation on Monday. Those presenting on Wednesday, please upload your presentation on Tuesday. At the very latest, all presenters should have uploaded their presentations during the preceding refreshment/lunch break prior to their session.

Presentations should be provided both in Microsoft PowerPoint **and** PDF formats. Any delay caused by technical problems will be taken out from your presentation time.

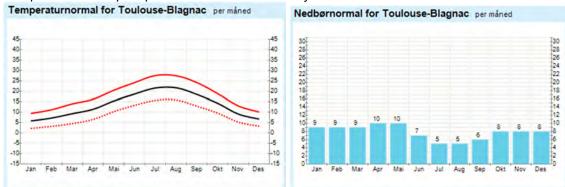
Each speaker will have a 15 minute slot allocated in the timetable. A maximum of 12 min will be allocated to the actual presentation, with 3 min for Q&A/changeover. The posters will be on display in the foyer area (Hall of the museum) for the entire time of the meeting.

Posters can be put up for display from Monday, 8:00 am until Wednesday, 5:00 pm. We encourage presenters to put up their posters as early as possible to guarantee maximum visibility. Posters can be a maximum size of 119 x 84 cm (format A0) in a portrait mode. Mounting material will be available at the registration/help desk. Any uncollected poster will be disposed at the end of the meeting.

WIFI ACCESS

The meeting hall is equipped with Wifi access. However due to the number of participants, the speed of internet connection may be limited.

SOCIAL EVENT


On Tuesday evening (6:15-6.30 pm) we will leave the museum for a short (1 km; 0.6 mile) cultural stroll by the Garonne river to the Hotel-Dieu Saint-Jacques, an historical monument, where the conference dinner will take place. At 7:30 pm refreshments will be served within the building in the "Salle des Pèlerins" (Pilgrims Room) and the dinner will commence at 8:00 pm in the "Salle des Colonnes" (Columns Room).

The Hotel-Dieu is located close to the "Pont Neuf" on the left bank of the Garonne River. The address is 2 Rue Charles Viguerie, 31059 Toulouse. A map will be provided during the meeting.

WEATHER

« À la Saint-Honoré, s'il fait gelée, le vin diminue de moitié. » « At Saint-Honoré (May 16th) if it is freezing, wine production is divided by two"

Temperatures and precipitations in Toulouse in May.

Left: Max temperature: Average max daily (24h) temperature per month Minimum temperature: Average minimum daily (24h) temperature per month Right: average amount of days (24h) with precipitation during a month. When precipitation has surpassed 1mm per day (24h) it is defined as a day with precipitation. See also:

https://weatherspark.com/m/46070/5/Average-Weather-in-May-in-Toulouse-Francehttp://www.toulouse.climatemps.com/may.php

SIGHTSEEING

Toulouse is the fourth largest city in France with a population of 476 500 (2015) and growing 6000 per year; 1 330 950 habitants within the urban era. **Toulouse** is the capital of Haute-Garonne *département*, Occitanie *région*, southern France. It is situated in a plain where the Garonne River curves northwest from the Pyrenean foothills. The city's architecture was long characterized by rose-red brick. Founded in ancient times, Toulouse developed as Tolosa during the Roman period. As capital of the Visigoths (419–507) it was taken (508) by Clovis I and included in the Merovingian kingdom. The university was founded in 1229. Its Parlement, established in 1420, had jurisdiction over Languedoc province until the French Revolution. The "Canal du Midi" connecting Toulouse to the Mediterranean, was completed in the 17th century. It was designated a UNESCO World Heritage site in 1996. The aerospace industry has seen extraordinary development in aeronautics and space industry: research.

Program for ELS 2018, the Sixth European Lunar Symposium

http://els2018.arc.nasa.gov/

Venue Les Abattoirs 76 Allées Charles de Fitte 31300 Toulouse, France

Science Organizing Committee

Patrick Pinet - IRAP, Toulouse University, France (Chair)
Mahesh Anand - Open University, UK (Co-Chair)
James Carpenter - European Space Agency, NL
Ana Cernok - Open University, UK
Serge Chevrel - IRAP, Toulouse University, France
Doris Daou - NASA Headquarters, USA
Kristina Gibbs, SSERVI, NASA Ames, USA
Harry Hiesinger - WWU, Germany
Simone Pirrotta - ASI, Italy
Greg Schmidt - SSERVI, USA
Alice Stephant - Open University, UK
Wim van Westrenen - VU Univ. Amsterdam, NL

Sunday 13 th May 2018						
	ELS 2018 - Registration and Reception					
18:00 - 19:30	Registration					
18:30 - 20:00	Reception					

			Monday 14th	May 2018				
08:1	15	Registration	Registration					
08:45 Welcome Address (Patrick Pinet) + Opening Remarks (Greg Schmi								
All	All talks: 15 mins (including Q&A)							
	Exploration and Future Missions Chair: Anand							
SN	Time	Abstract #	Author	Title				
1	09:00	085	Bussey	NASA'S Human Exploration and Operations Mission Directorate's Lunar Activities				
2	09:15	042	Carpenter	Lunar Exploration Plans in ESA				
3	09:30	069	Ohtake	Planning a Japanese Lunar Polar Mission				
4	09:45	046	Kring	A Lunar Sample Return Strategy for the Schrodinger Basin that Taps into the Volatile Cycle of the Lunar Farside				
5	10:00	094	Futaana	Key Sciences of the Lunar Space Environment to be Investigated by the Mission SELMA				
6	10:15	018	Porcelli	MoonLIGHT and INRRI for Next Lunar Missions: the Return of Laser Retroreflectors to the Moon				
7	10:30	128	Barber	L-DART: Direct Analysis of Resources Traps within Lunar Permanently Shadowed Regions by a Penetrator Mission				
		Tea/coffee bre	ak cal Implications	3				
	ir: Hiesin	_	•					
8	11:05	104	Meyer	Observations from a New Global Map of Light Plains from the Lunar Reconnaissance Orbiter Camera				
9	11:20	032	Wohler	M ³ -based Abundance Maps of Lunar Refractory Elements				
10	11:35	041	Moriarty	The Four Compositional Zones of the South Pole - Aitken Basin Revealed by Moon Mineralogy Mapper Data				
11	11:50	052	Martinot	Survey of the Lunar Crust-Mantle Interface with the Moon Mineralogy Mapper Data				
12	12:05	087	Pinet	Mineralogical Mapping at Copernicus Crater from MGM Deconvolution of M3 Observations				
13	12:20	134	McBride	Diversity of Volcanic Eruption Styles in the Central Procellarum Region of the Moon				
14	12:35	137	Horgan	Constraints on Lunar Eruption Styles from the Mineralogy of Small Lunar Pyroclastic Deposits				
		Lunch (provide		1 yrociastic Deposits				

	Volatiles, Dust and Lunar Environment Chair: Schmidt						
15	14:00	038	Costello	A Model for the Comparative Role of Impact Gardening as a Control of Near-Surface Ice on the Moon and Mercury			
16	14:15	047	Horanyi	The Dust Environment of the Moon			
17	14:30 14:45	101	Sefton-Nash Meslin	Far-IR Emissivity Temperature Dependence In Lunar South Polar Permanently Shaded Terrain Radon and Polonium as Tracers of Lunar Outgassing, Volatiles and Dust			
19	15:00	086	Biswas	Mobile In-Situ Exploration of Lunar Volatiles with the LVS on LUVMI			
20	15:15	065	O'Brien	Risks and Rewards Amidst Inescapable Fine Dust on the Moon: Measurements from APOLLO 11 to CHANG'E-3 & -4			

15:30 - 15:55 Tea/coffee break

Lunar Interior: Structure, differentiation and Evolution of the Moon
Chair: Stephant

Cna	Chair: Stephant						
21	15:55	023	Laneuville	Supercooling and High Magnetic Field on the Early Moon			
22	16:10	074	Schwinger	Compositional Changes in the Lunar Mantle Resulting from Giant Impact - Induced Melting			
23	16:25	129	Zhao	A Single Plume Upwelling on Lunar Near Side that Provides a Source for Titanium-Rich Volcanism			
24	16:40	049	Garcia	An International Team to Create Reference Models and Data Sets for Moon Seismology			
25	16:55	044	Gillet (presented by Calvet)	Characterization of Shallow Moonquakes and the Megaregolith: New Insights from Apollo Data			
26	17:10	130	Kawamura	Future Seismic Exploration on the Moon: Possible Launch Opportunity from Asia			

Poster session from ~17:30 to 19:00 (cocktail and drinks sponsored by iSpace)

			Tuesday 15 th Ma	ay 2018					
08:3	20	Registration							
			g ()&A)						
	All talks: 15 mins (including Q&A) Remote Sensing and Physical Implications								
	Chair: Pinet								
SN	Time	Abstract #	Author	Title					
27	09:00	033	Wohler	Correlation Between Lunar Soil Composition and Weakly Bounded Surficial OH/H2O Component					
28	09:15	116	Denevi	Space Weathering and the Stratigraphy of the Lunar Regolith					
29	09:30	120	Greenhagen	Investigating Thermal Emission from the Lunar Epiregolith					
30	09:45	136	Martin	Modal Mineralogy and Maturity Estimates of Apollo 14, 15, and 16 Soils using FTIR and QUEMSCAN Techniques					
31	10:00	117	Patterson	Mini-RF S- and X-band Bistatic Radar Observations of the Moon					
32	10:15	007	Liu	Regolith Mixing by Impacts: Lateral Diffusion of Basin Melt					
33	10:30	064	Klima	Integrating Crystal Chemistry with Laboratory Analysis to Model Bound and Adsorbed OH- and H2O					
		Tea/coffee bi	reak al Implications (C	ont'd)					
	ir: Chevre		ar implications (c	one uj					
34	11:05	034	Wohlfarth	Simulation of the Effect of Space Weathering on the 3-micrometer Absorption Band based on Mie Theory.					
35	11:20	115	Cahill	Scrutinizing the Presence of LAMP Identified Lunar Swirls Relative to Modeled Magnetic Sources					
36	11:35	138	Pieters	What Lunar Swirls Represent (probably)					
37	11:50	072	Kreslavsky	Dependence of Albedo on Slope in Lunar Highlands: Results from LOLA Normal Reflectance Data Analysis					
38	12:05	109	Speyerer	Investigating Recent Surface Changes with Temporal Image Pairs and Photometric Sequences					
39	12:20	091	Hiesinger	The Potential LUNA-GLOB Landing Site: Contributions of Lunar Basin Ejecta Materials					
40	12:35	146	Jawin/Schmidt	Lunar Science for Landed Missions Workshop Findings Report (https://lunar- landing.arc.nasa.gov/downloads/LunarL andedScience Summary 180315.pdf)					

13:0	13:00 - 14:00 - Lunch (provided onsite)							
	Sample Analysis and Experiments Chair: Anand							
41	14:00	118	Greenwood	Oxygen Isotope Evidence for a High- Energy Moon-Forming Giant Impact and Early Delivery of Earth's Water.				
42	14:15	150	Poitrasson	Impact of Mineral-Scale Isotopic Heterogeneity on Iron Isotope Composition Estimates of Lunar Igneous Reservoirs				
43	14:30	029	Furi	The Noble Gas Bouillabaisse in Apollo 15426 Green Glasses				
44	14:45	105	Stephant	Abundance and Isotopic Composition of Hydrogen and Chlorine in Apatite from Lunar Meteorite NWA 10989				
45	15:00	125	Cernok	Abundance and H Isotopic Composition of Water in Shocked Lunar Apatite from Mg-Suite Rocks				
15:1	15 - 15:40) Tea/coffe	e					
46	15:40	055	Tremblay	Revisiting the 40Ar/39Ar Chronology of Lunar Meteorite NWA 773 Provides New Constraints on its Diachronous Geologic History				
47	15:55	084	Bell	Understanding the Apollo 15 Magmatic Plumbing System using Crystal Size Distribution Analysis				
48	16:10	059	Lin	The Origin of the High-TiO2 Lunar Basalts: Constraints from Experiments on Remelting of Shallow Magma Ocean Cumulates				
49	16:25	142	Riedo	Spatially Resolved Chemical Analysis using a Miniature LIMS System Designed for In Situ Space Exploration Missions				
	~16:45 to 18:15 - Poster session 18:15-19:30 – Stroll by the river to Hotel Dieu / Outside cultural visit							
	(conference dinner from 19:30)							

	Wednesday 16th May 2018						
08:3	0	Registration					
All t	All talks: 15 mins (including Q&A)						
Impact and cratering of the Moon / age dating Chair: Cernok							
SN	Time	Abstract #	Author	Title			
50	09:00	054	Werner	Lunar Cratering Chronology - Revisited			
51	09:15	111	Van Der Bogart	Constraining the Age of the Crisium Impact Basin			
52	09:30	068	Bultel	Spectral Mapping and Crater Statistics Reevaluated for all Apollo Landing Sites			
53	09:45	095	Iqbal	Studying the Crater Size-Frequency Distribution of the Apollo 12 Landing Site.			
54	10:00	008	Cadogan	Automated Counting of the Smallest Craters at Lunar Landing Sites			
55	10:15	112	Mahanti	Investigating Size-Dependent Small Lunar Crater Degradation using Chebyshev Coefficients			
56	10:30	062	Clark	An Investigation of the Seismic Record around Lunar Lobate Scarps			
ISRU	J: Instrun		eak Lunar Simulants former astronaut	(STS 78))			
<i>57</i>	11:05	114	Sefton-Nash	ESA's PROSPECT Package For Exploration of Lunar Resources: Investigation Domains			
58	11:20	135	Levin-Prabhu	Microwave Heating of Lunar Simulants JSC-1A and NU-LHT-3M: Experimental and Theoretical Analysis			
59	11:35	022	Sperl/Meurisse	Solar Sintering of Lunar Regolith for Shielding Habitats on the Moon			
60	11:50	009	Denk	Full-Scale Terrestrial Demonstrator for Ilmenite Reduction with Concentrated Solar Power			
61	12:05	100	Sargeant	Hydrogen Reduction of Ilmenite in a Static System for a Lunar ISRU Demonstration			
62	12:20	127	Reiss	In-Situ Hydrogen Reduction of Lunar Polar Regolith: from Proof of Concept Experiments with ProSPA to Larger Scale ISRU Demonstrators			
63	12:35	126	Reiss	Demonstration of Volatiles Extraction from NU-LHT-2M with the ProSPA Instrument Breadboard			
12:5	50 - 14:20	Lunch (spons	ored by Team Ind	us)			

ISRU	ISRU: Preparation and Commercial Strategies						
Chai	Chair: Carpenter						
64	14:30	043	Carpenter	Preparing for In Situ Resource			
				Utilisation on the Moon			
65	14:45	056	Cowley	Spaceship EAC - Overview of			
				Ongoing Initiative Projects Relating			
				to Lunar Exploration at the			
				European Astronaut Centre			
66	15:00	108	Acierno	Moving Forward after the Google			
				Lunar Xprize, ispace's Plan for the			
				Commercial Exploration and			
				Exploitation of the Moon			
67	15:15	020	Berinstain	Future Low-Cost Lunar and			
				Planetary Missions Enabled by			
				Commercial Space Companies			
68	15:30	145	Hegde	TEAMINDUS: Commercial Lunar			
				Exploration Missions and Future			
				Technologies			
15:4	5 - 16:00			Wrap up/Next ELS announcement			
16:0	0 - 17:00	Networking event with Champagne (sponsored by Team Indus)					

	Posters : Monday, 14 th May (~17:30 – 19:00) and Tuesday, 15 th May (~16:45 – 18:15). <i>Posters can be put up from Monday, 14th May from 08:00; posters should be of no larger</i>							
than A	than A0 in size (in portrait mode); pins/velcro/tape provided).							
SN	Poster #	Abs#	Presenter	Title				
_	ration and F			11110				
	Lunar settle							
69	1	015	Degtyarev	Lunar Industry & Research Base				
70	2	021	Saunders	Commercial Lunar Mission Support Services				
71	3	019	Chahla	ILWEG Euromoonmars exolab				
72	4	026	Foing	ExoLab 2.0				
73	5	057	van der Sanden	Optimizing Geological Exploration in an Analogue Lunar Habitat: Sub-System Analysis and Human-Factor Integration				
74	6	058	Cowley	LUNA and FlexHab - A Mission Focused Analogue for Preparatory Exploration Activities				
75	7 (withdrawn)	066	Hong	Conceptual Construction Process for Lunar Lava Tube Habitation				
76	8	076	Dubois	Remote Controlled Telescopes from a Moon Habitat: EUROMOONMARS Project				
77	9	093	Pennec	Cryogenic Air Purification for Deep Space Exploration.				
	Field trip, EV	/A operat	tions					
78	10(withdrawn)	016	Da-Poian	CRAFT: Collaborative Rover and				
70	1.1	070		Astronauts Future Technology				
79	11	073	via Espinal	Development of Electrostatic Spacesuit Cleaner for Lunar Exploration Missions				
80	12	077	Foing	EUROMOONMARS Field Results & Moonvillage Activities: Update for ELS2018				
81	13	096	Foing	MOONMARS Analogue Sample Spectro- Analysis in Laboratory & Field Campaigns				
82	14	102	Bessone (presented by Cowley)	An Electronic Fieldbook Supporting Data Collection and Situational Awareness during Astronauts EVA Geologic Traverses on the Lunar Surface				
83	15	106	Sauro (presented by Cowley)	Technologies and Operational Concepts for Field Geology and Exploration on the Moon: the ESA PANGAEA- eXstension Campaign in Lanzarote (Canary Archipelago, Spain)				
	Mission cond	cept, stra	tegy and technology	for Moon exploration				
84	16(withdrawn)	017	Koryanov	INFLATE: INFlate Landing Apparatus Technology				
85	17	110	Whittaker	Cuberover: A Low Cost, Reliable Platform for Planetary Exploration				
86	18(withdrawn)	025	Pettinelli	Ground Penetrating Radar for Lunar Subsurface Exploration				

87	19	123	Sheridan	Penetrator-Deployed Mass
				Spectrometers for Volatiles Analysis at
				the Moon
88	20	082	Lasue	Laser-Induced Breakdown
				Spectroscopy (LIBS): a Technique for
00	24	074	41	Lunar Exploration
89	21(withdrawn)	071	Ahn	Dust Thermal Vacuum Chamber(DTVC)
				and Verification of Lunar Construction Technologies in Lunar Surface
				Environments
90	22	075	Karouji	Activity Report on the Landing Site and
70		075	i i i i i i i i i i i i i i i i i i i	Return Sample of the Japanese Lunar
				Science Community in HERACLES
				Mission
91	23	037	Kerber	Moon Diver: A Discovery Mission
				Concept for Understanding the History
				of the Mare Basalts through the
				Exploration of a Lunar Mare Pit
92	24	035	Neklesa	Exploring New Horizons:
				EUROMOONMARS Simulation at ESTEC
93	25	122	Himbrin	2017
93	25	132	Hipkin	Lunar Science with HERACLES
Remot	te Sensing ar	ıd Geolo	gical Implications/	Physical Implications
94	26	088	Chevrel	Investigation of Large Lunar Craters:
				Present and Future
95	27	083	Orgel	Potential Landing Sites for the Chang'E
				-4 Exploration Mission to the Apollo
0.6	20	0.40	Calacatana	Basin, Moon.
96	28	040	Schnuriger	Characterization of Lunar Volcanism
				Features in the Arago Region, Western Mare Tranquillitatis.
97	29	024	Lee	Possible Impact Melt Lava Tube
<i>J1</i>	2)	021	Lec	Skylights Near the North Pole of the
				Moon
98	30	133	Grava	The LAMP Spectrograph on the Lunar
				Reconnaissance Orbiter: Lunar Science
				with Ultraviolet Eyes
99	31	050	Francis	Candidate Selection for Change
				Detection and DTM Production on the
_	<u> </u>	<u> </u>	DICC	Moon
		1		Evolution of the Moon
100	32	122	Maurice	Prolonged Lunar Magma Ocean by Heat-Piping from Cumulate Overturn
101	33	053	Drilleau	Seismic Velocity and Crustal Thickness
101		033	Difficati	Inversions: Moon and MARS
102	34	060	Fayon	Design and Development of an
			- 4, 4, 4	Interferometric Readout for Planetary
				Seismometers
103	35	027	Steenstra	Assessment of a High-Energy Origin of
				the Moon from Metal-Silicate
				Partitioning of Siderophile Elements at
		<u> </u>		High Temperatures

104	36	028	Steenstra	Evidence for a Sulfur-Depleted Lunar Interior from the Solubility of S in						
				Lunar Melts						
Sampl	Sample Analysis & Experiments									
105	37	039	Muftakhetdinova	Sources and Structures of Metallic Iron on the Moon						
106	38	078	Zago Garcia	Investigation on Wetting Behaviour of Lunar Regolith Simulant						
107	39	119	Mortimer	Update on the Preparation and Characterization of Carbonaceous Chondrite Standards for Verification of ESA's 'PROSPECT' Package						
108	40	131	Cernok	Shock-Induced Microtextures in Lunar Apatite and Merrillite						
109	41	099	Barber	PROSPA: An Instrument for Lunar Polar Volatiles Prospecting and In Situ Resource Utilization Proof of Concept						
Impac	t and Crater	ing on th	e Moon/Age dating	g						
110	42	103	Michael	Evolution of the Presence of Impact Melt at the Near-Surface of the Moon						
111	43	098	Cahill	Detection and Characterization of Present Day Lunar Impact Craters with MINI-RF/GOLDSTONE X-BAND Bistatic Observations						
112	44	113	Ravi	Terrace Width Variations In Fresh Lunar Craters						
ISRU I	nstrumenta	tion and	Lunar Simulants							
113	45	048	Calzada-Diaz	Commercial Exploration of the Moon: ispace's Polar Ice Explorer						
114	46	090	Adachi	Granular Vibration-Pumping System for ISRU Missions on the Moon						
115	47	067	Celotti	MESG - Moon Energy Storage and Generation: Concept Design and Analysis						
116	48	124	Denk	Basics of Concentrated Solar Power for Moonwalkers						
117	49	092	Pitcher	Volatile Extraction and Detection From Frozen Lunar Regolith Simulants in Preparation for the LUVMI Rover						
118	50	089	Engelschion	EAC-1A: Evaluation of a Basanitic Material as a Novel Large-Volume Lunar Regolith Simulant						
119	51	080	Donaldson Hanna	Update on the Characterization of Lunar Highlands Regolith Simulants in Preparation for Drilling and Sampling into the Polar Regolith by ESA's PROSPECT Package						
120	52	061	Lim	Numerical Modelling of Microwave Sintering of Lunar Simulants under						
Misce	 laneous	1	<u> </u>	Near Lunar Atmospheric Condition						
121	53	051	Manaud	OpenPlanetaryMap: Building the first Open Planetary Mapping and Social						

				Platform for Researchers, Educators, Storytellers, and the General Public
122	54	107	Schmitt	SSHADE: The European Solid
				Spectroscopy Database Infrastructure
123	55	036	Law/Day	NASA'S MOON TREK: Extending
				Capabilities for Lunar Mapping and
				Modeling.
124	56	121	Anand	The Lunar Meteorite Virtual
				Microscope Collection
125	57	045	Zaklynsky	Developing Structures For An
				International Art Gallery on the Moon

List of contributors

Name Affiliation
Abigail Calzada-Diaz ispace Europe

Aidan Cowley European Space Agency

Alain Berinstain Moon Express Inc.

Alessandro Zago García DLR (german aerospace center)

Alexander Zaklynsky MFA, KABK. The Royal Academy of Art & The Royal Conservatory of Den Haag

Alexandre Meurisse Institute of Materials Physics in Space, DLR, 51170 Cologne, Germany

Alice Stephant The Open University

Alistair Francis Mullard Space Science Laboratory

Ana Cernok Planetary and Space Sciences, The Open University, Milton Keynes, MK7 6AA, UK

Andreas Riedo Sackler Laboratory for Astrophysics

Anna Neklesa Bernard Foing

Ben Bussey NASA

Benjamin Bultel Centre for Earth Evolution and Dynamics (CEED), University of Oslo, Norway

Benjamin Greenhagen Johns Hopkins Applied Physics Laboratory

Bernard Foing ESA ESTEC

Bernard Schmitt Institut de Planétologie et Astrophysique de Grenoble (UGA - CNRS)

Brett Denevi Johns Hopkins Applied Physics Laboratory

Brian Day NASA SSERVI

Brian O'Brien School of Physics, University of Western Australia

Briony Horgan Purdue University
Carle Pieters Brown University

Carolyn van der Bogert Westfälische Wilhelms Universität Münster

Cesare Grava Southwest Research Institute
Chahla Cynthia EuroMoonMars - ILEWG - ESA
Chris Saunders Surrey Satellite Technology Limited

Christian Wöhler Image Analysis Group, TU Dortmund
Craig Pitcher Open University

Csilla Orgel Freie Universität Berlin

Daniel Moriarty NASA GSFC
David Kring USRA - LPI

Dayl Martin University of Manchester

Edgar Steenstra Vrije Universiteit Amsterdam;

Elliot Sefton-Nash European Space Agency, ESTEC

Emerson Speyerer Arizona State University

Emily Costello University of Hawai'i at Manoa

Frank Poitrasson GET-CNRS, 14, avenue E. Belin, 31400, Toulouse, France

Francesco Sauro University of Bologna

Füri Evelyn CRPG-CNRS

Gennadiy Osinovyy Yuzhnoye State Design Office

Gerald Patterson Johns Hopkins University Applied Physics Laboratory

Germaine van der Sanden ESA ESTEC + Free University of Amsterdam

Gregory Michael Freie Universitaet Berlin
Hannah Sargeant The Open University

Harald Hiesinger Institut für Planetologie, Westfälische Wilhelms-Universität Münster

Heather Meyer Arizona State University

Jaclyn Clark Institut für Planetologie, WWU Müster

James Carpenter ESTEC

James Mortimer The Open University

János Biswas TUM Chair for Astronautics

Jeremie Lasue IRAP, Université de Toulouse, CNRS, CNES, Observatoire Midi-Pyrénées (OMP)

Joshua Cahill JHU-APL

Kay Wohlfarth TU Dortmund University
Kerri Donaldson Hanna University of Oxford
Kyle Acierno ispace Europe SA

Laura Kerber Jet Propulsion Laboratory
Louis Dubois ESA-ESTEC & ISAE Supaéro

Luca Celotti Sonaca Space GmbH

Luca Porcelli INFN-LNF Lucile Fayon IPGP

Makiko Ohtake Japan Aerospace Exploration Agency
Marie Calvet IRAP, Université de Toulouse, France

Marie McBride Purdue University

Marissa Tremblay Scottish Universities Environmental Research Centre

Masato Adachi Deutsche Zentrum für Luft- und Raumfahrt

Matthieu Laneuville Earth-Life Science Institute, Tokyo Institute of Technology

Maxime Maurice DLR

Melanie Drilleau Institut de Physique du Globe de Paris Mélissa Martinot VU University Amsterdam - UCB Lyon

Michael Provenzano Carnegie Mellon University

Mihaly Horanyi LASP and Physics, U. of Colorado Mikhail Kreslavsky University of California - Santa Cruz

N. S. Hegde Team Indus

Nicolas Manaud SpaceFrog Design

Nicolas Schnuriger Institut de Recherche en Astrophysique et Planétologie - TOULOUSE

oriol via espinal European Space Agency (ESA)

Pascal Lee SETI Institute, Mars Institute & NASA Ames Research Center

Patrick Pinet IRAP, Université de Toulouse, CNRS, CNES, Observatoire Midi-Pyrénées

Peter Cadogan None

Philipp Reiss Technical University of Munich

Pierre-Yves Meslin IRAP, Université de Toulouse, CNRS, CNES, Observatoire Midi-Pyrénées

Prasun Mahanti Arizona State University

Rachel Klima JHUAPL

Raphael Garcia ISAE-SUPAERO

Razilia Muftakhetdinova Extra Terra Consortium, Ural Federal University, Russian Federation.

Richard Greenwood The Open University

Sabrina Schwinger German Aerospace Center (DLR) Berlin

Samantha Bell University of Manchester

Serge Chevrel IRAP, Université de Toulouse, CNRS, CNES, Observatoire Midi-Pyrénées

Simeon Barber The Open University
Simon Sheridan The Open University

Srinidhi Ravi School of Earth and Space Exploration, Arizona State University

Stephanie C. Werner CEED - University of Oslo, Norway

Sungwoo Lim The Open University

Taichi Kawamura National Astronomical Observatory of Japan/IPGP
Thorsten Denk Ciemat-PSA, Ctra de Senés s/n, 04200 Tabernas, Spain

Tiantian Liu Technische Universität Berlin

Vibha Levin Prabhu The Open University
Victoria Hipkin Canadian Space Agency
Victoria S. Engelschion European Space Agency

Wajiha Iqbal Westfälische Wilhelms-Universität

Yan Pennec Air Liquide Advanced Technologies, 2 rue de clémencières. 38 360 Sassenage Yanhao Lin Department of Earth Sciences, Vrije Universiteit Amsterdam, The Netherlands

Yoshifumi Futaana Swedish Institute of Space Physics Yue Zhao Vrije Universiteit Amsterdam

Yuzuru Karouji Japan Aerospace Exploration Agency